Tugas 7 UAS(Kelompok)


Mendinginkan Suhu Air Dengan Sensor NTC

1. Dapat mensimulasikan rangkaian dengan menggunakan sensor NTC

2. Dapat mengetahui grafik respon sensor NTC

3. Dapat mengetahui prinsip kerja dan kegunaan setiap komponen sensor NTC

4.Memenuhi tugas UAS mata kuliah Kimia Dasar

2.Alat dan Bahan[Kembali]

  • Alat yang digunakan

a)Ground

Ground adalah titik yang dianggap sebagai titik kembalinya arus listrik arus searah atau titik kembalinya sinyal bolak balik atau titik patokan (referensi) dari berbagai titik tegangan dan sinyal listrik di dalam rangkaian elektronika.

Dalam Elektronika, ground yang dimaksud adalah ground semu (boleh juga nanti dihubungkan dengan ground sesungguh nya untuk pengamanan terhadap setrum).

Yang dimaksud titik "ground semu" adalah titik tersebut dihubungkan dengan body alat elektronik yang terbuat dari logam sehingga semua komponen di dalamnya tertutupi oleh ground semu itu.

Dengan cara ini jika ada (dan pasti ada) gelombang elektromagnetik dari udara sekitarnya tidak masuk ke alat elektronik kita.

Ground pada elektronik berfungsi sebagai:

1.Sebagai proteksi peralatan elektronik atau instrumentasi sehingga dapat mencegah kerusakan akibat adanya bocor tegangan.

2.Grounding di dunia eletronika berfungsi untuk menetralisir cacat (noise) yang disebabkan baik oleh daya yang kurang baik, ataupun kualitas komponen yang tidak standar.

Simbol Grounding Listrik

Sama seperti kebanyakan istilah dalam dunia kelistrikan sering terdapat simbol yang berbeda beda di tiap negara begitupun juga dengan simbol grounding listrik yang terdapat beberapa yang umum digunakan. Pada peralatan kelistrikan tentunya kita tidak jarang melihat ikon simbol dibawah ini bukan.



Simbol grounding

Kesemuanya adalah sama yaitu sebagai simbol grounding listrik. Fungsi dari simbol ini tentu saja banyak sekali misalnya saat proses gambar teknik instalasi listrik, proses pembangunan gedung, troubleshooting pada saat terjadi kegagalan ataupun maintenance instalasi listrik.

b)VCC


Spesifikasi:5V
VCC menunjukkan pin yang harus disambung ke tegangan positip (biasanya 5V atau 3.3V)

Pada awalnya VCC muncul ketika berbicara tentang rangkaian yang melibatkan transistor, khsusunya Bipolar Junction Transistor. Komponen-komponen elektronik aktif hampir selalu memiliki transistor di dalamnya. Sebuah IC (Integrated Circuit) bisa terdiri dari jutaan atau bahkan milyaran transistor di dalamnya.

Sebuah transistor memiliki 3 kaki yaitu Collector, Base dan Emiter. VCC menyatakan tegangan (Voltage) pada kaki Collector. Jadi istilah VCC pada awalnya merujuk kepada tegangan di Collector ini. Sedangkan tegangan pada Emiter disebut VEE. Dan di kaki Base adalah ground.

Istilah VCC dan VEE ini terus terbawa sampai sekarang bahkan kepada komponen yang tidak mengandung transistor sekalipun. VCC menyatakan power supply positif sedangkan VEE menyatakan power supply negatif. Sedangkan ground adalah netral (0 V). Kebanyakan kasus kita hanya menemukan VCC dan Ground.

Berapakah nilai VCC? tergantung spesifikasinya bisa +3.3V, +5V, +9V atau +12V dan VEE bisa -3.3V, -5V, -9V atau -12V.

Oleh karena itu SANGAT PENTING untuk membaca spesifikasi VCC ini, jika salah bisa berisiko rusaknya komponen arduino kita.

Sebetulnya selain VCC dan VEE ada juga VDD dan VSS. Kalau VCC dan VEE ditemui pada transitor jenis bipolar (BJT), VDD dan VSS ada di transistor jenis FET (Field Effect Transistor). VDD (Drain) sama seperti VCC menyatakan power positif sedangkan VSS (Source) menyatakan power negatif.

c)Battery(Power Supply)
Spesifikasi:-12V

Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Hampir semua perangkat elektronik yang portabel seperti Handphone, Laptop, Senter, ataupun Remote Control menggunakan Baterai sebagai sumber listriknya

Dalam kehidupan kita sehari-hari, kita dapat menemui dua jenis Baterai yaitu Baterai yang hanya dapat dipakai sekali saja (Single Use) dan Baterai yang dapat di isi ulang (Rechargeable).

Baterai Primer (Baterai Sekali Pakai/Single Use)

Baterai Primer atau Baterai sekali pakai ini merupakan baterai yang paling sering ditemukan di pasaran, hampir semua toko dan supermarket menjualnya. Hal ini dikarenakan penggunaannya yang luas dengan harga yang lebih terjangkau. Baterai jenis ini pada umumnya memberikan tegangan 1,5 Volt dan terdiri dari berbagai jenis ukuran seperti AAA (sangat kecil), AA (kecil) dan C (medium) dan D (besar). Disamping itu, terdapat juga Baterai Primer (sekali pakai) yang berbentuk kotak dengan tegangan 6 Volt ataupun 9 Volt.
Baterai Sekunder (Baterai Isi Ulang/Rechargeable)

Baterai Sekunder adalah jenis baterai yang dapat di isi ulang atau Rechargeable Battery. Pada prinsipnya, cara Baterai Sekunder menghasilkan arus listrik adalah sama dengan Baterai Primer. Hanya saja, Reaksi Kimia pada Baterai Sekunder ini dapat berbalik (Reversible). Pada saat Baterai digunakan dengan menghubungkan beban pada terminal Baterai (discharge), Elektron akan mengalir dari Negatif ke Positif. Sedangkan pada saat Sumber Energi Luar (Charger) dihubungkan ke Baterai Sekunder, elektron akan mengalir dari Positif ke Negatif sehingga terjadi pengisian muatan pada baterai. Jenis-jenis Baterai yang dapat di isi ulang (rechargeable Battery) yang sering kita temukan antara lain seperti Baterai Ni-cd (Nickel-Cadmium), Ni-MH (Nickel-Metal Hydride) dan Li-Ion (Lithium-Ion).

Jenis-jenis Baterai Sekunder

Struktur Battery

elemen baterai

  • Bahan yang digunakan
a)Resistor(Analog Resistor Primitive)

Spesifikasi:-analog
                  -Resistance:10k,40k
                  -Toleransi : +/- 5%

Resistor merupakan salah satu komponen elektronika pasif yang berfungsi untuk membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai teminal antara dua komponen elektronika. Tegangan pada suatu resistor sebanding dengan arus yang melewatinya.

(V = I.R)

Satuan nilai Resistor atau Hambatan adalah Ohm. Nilai Resistor biasanya diwakili dengan kode angka ataupun gelang warna yang terdapat di badan resistor. Hambatan resistor sering disebut juga dengan resistansi atau resistance.

Rumus dari Rangkaian Seri Resistor adalah :

Rtotal = R1 + R2 + R3 + ….. + Rn

Rumus dari Rangkaian Seri Resistor adalah :

1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

Berikut adalah macam-macam resistor dan simbolnya

 

b)Lampu LED


Spesifikasi:-Tegangan : ±2 - 3V
                  - Arus:±20 mA

Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

LIGHT EMITTING DIODE (LED), PRINCIPLE OF OPERATION ~ SCC Education

LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).

LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah Energi Listrik menjadi Energi Cahaya.

c)Relay


Relay merupakan komponen elektronika berupa saklar atau switch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay.
Prinsip Kerja Relay

Pada dasarnya, Relay terdiri dari 4 komponen dasar yaitu :
1.Electromagnet (Coil)
2.Armature
3.Switch Contact Point (Saklar)
4.Spring

Berikut ini merupakan gambar dari bagian-bagian Relay :


Struktur dasar Relay

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

-Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
-Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Apabila Kumparan Coil diberikan arus listrik, maka akan timbul gaya Elektromagnet yang kemudian menarik Armature untuk berpindah dari Posisi sebelumnya (NC) ke posisi baru (NO) sehingga menjadi Saklar yang dapat menghantarkan arus listrik di posisi barunya (NO). Posisi dimana Armature tersebut berada sebelumnya (NC) akan menjadi OPEN atau tidak terhubung. Pada saat tidak dialiri arus listrik, Armature akan kembali lagi ke posisi Awal (NC). Coil yang digunakan oleh Relay untuk menarik Contact Poin ke Posisi Close pada umumnya hanya membutuhkan arus listrik yang relatif kecil.


Arti Pole dan Throw pada Relay

Karena Relay merupakan salah satu jenis dari Saklar, maka istilah Pole dan Throw yang dipakai dalam Saklar juga berlaku pada Relay. Berikut ini adalah penjelasan singkat mengenai Istilah Pole and Throw:
  • Pole : Banyaknya Kontak (Contact) yang dimiliki oleh sebuah relay
  • Throw : Banyaknya kondisi yang dimiliki oleh sebuah Kontak (Contact)
Berdasarkan penggolongan jumlah Pole dan Throw-nya sebuah relay, maka relay dapat digolongkan menjadi :
  • Single Pole Single Throw (SPST) : Relay golongan ini memiliki 4 Terminal, 2 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
  • Single Pole Double Throw (SPDT) : Relay golongan ini memiliki 5 Terminal, 3 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
  • Double Pole Single Throw (DPST) : Relay golongan ini memiliki 6 Terminal, diantaranya 4 Terminal yang terdiri dari 2 Pasang Terminal Saklar sedangkan 2 Terminal lainnya untuk Coil. Relay DPST dapat dijadikan 2 Saklar yang dikendalikan oleh 1 Coil.
  • Double Pole Double Throw (DPDT) : Relay golongan ini memiliki Terminal sebanyak 8 Terminal, diantaranya 6 Terminal yang merupakan 2 pasang Relay SPDT yang dikendalikan oleh 1 (single) Coil. Sedangkan 2 Terminal lainnya untuk Coil.
Selain Golongan Relay diatas, terdapat juga Relay-relay yang Pole dan Throw-nya melebihi dari 2 (dua). Misalnya 3PDT (Triple Pole Double Throw) ataupun 4PDT (Four Pole Double Throw) dan lain sebagainya.

Untuk lebih jelas mengenai Penggolongan Relay berdasarkan Jumlah Pole dan Throw, silakan lihat gambar dibawah ini :
Jenis relay berdasarkan Pole dan Throw


Fungsi-fungsi dan Aplikasi Relay

Beberapa fungsi Relay yang telah umum diaplikasikan kedalam peralatan Elektronika diantaranya adalah :
  1. Relay digunakan untuk menjalankan Fungsi Logika (Logic Function)
  2. Relay digunakan untuk memberikan Fungsi penundaan waktu (Time Delay Function)
  3. Relay digunakan untuk mengendalikan Sirkuit Tegangan tinggi dengan bantuan dari Signal Tegangan rendah.
  4. Ada juga Relay yang berfungsi untuk melindungi Motor ataupun komponen lainnya dari kelebihan Tegangan ataupun hubung singkat (Short).
d)Transitor


Spesifikasi:
-Silicon NPN Low Power Bipolar Transitor
-625mW
-150C

Transistor Bipolar atau nama lainnya adalah transistor dwikutub adalah jenis transistor paling umum di gunakan dalam dunia elektronik. Di dalam transistor ini terdapat 3 lapisan material semikonduktor yang terdiri dari dua lapisan inti, yaitu lapisan P-N-P dan lapisan N-P-N.Transistor tipe NPN adalah transistor bipolar yang menggunakan arus listrik kecil dan tegangan positif pada terminal basis untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Kolektor ke emitor.

Transistor bipolar juga memiliki 3 kaki yang masing masing di beri nama Basis (B), Kolektor (K) dan Emiter (E). Perbedaan antara fungsi dan jenis-jenis transisor ini terlihat pada polaritas pemberian tegangan bias dan arah arus listrik yang berlawanan.

Cara kerja transistor bipolar dapat di lihat dari dua dioda yang terminal positif dan negatif selalu berdempet, itu sebabnya pada saat ini terdapat 3 kaki terminal. Perubahan arus listrik dari jumlah kecil dapat menimbulkan efek perubahan arus listrik dalam jumlah besar khususnya pada terminal kolektor. Prinsip kerja ini lah yang mendasari penggunaan transistor sebagai penguat elektronik.

Prinsip kerja transistor PNP adalah arus mengalir dari emitor menuju kolektor. Dibandingkan NPN, pada PNP terjadi hal sebaliknya ketika arus mengalir pada kaki basis, maka transistor tidak bekerja. Arus akan mengalir apabila kaki basis diberi sambungan ke ground (-) hal ini akan menginduksi arus pada kaki emitor ke kolektor. Jika basis dihubungkan diberi tegangan maka arus basis harus lebih kecil dari arus yang mengalir dari emitor ke kolektor.

Prinsip kerja transistor NPN adalah arus mengalir dari kolektor menuju emitor. Jika basis dihubungkan diberi tegangan maka arus basis harus lebih kecil dari arus yang mengalir dari kolektor ke emitor. Untuk mengalirkan arus tersebut dibutuhkan sambungan ke sumber positif (+) pada kaki basis. Ketika basis diberi tegangan, hingga dititik saturasi, maka akan menginduksi arus dari kaki kolektor ke emitor.

e)Motor DC

Spesifikasi:

–Stepper motor tipe bipolar yang bekerja pada tegangan 9V.
– Tipe: bipolar.
– Kondisi: refurbished, sudah diuji @ 9V.
– Tegangan kerja: 12V (new-rated), 259mA.
– Resolusi: 7,5ยบ/step (full step).
– Torsi: 38,2 mN.m (new-rated).

Motor yang beroperasi pada arus DC disebut sebagai Motor DC dan motor yang menggunakan arus AC disebut sebagai motor AC. Umumnya kamu tidak akan terlalu banyak menjumpai motor AC tetapi motor DC hampir digunakan dimana saja, yang mana di bidang listrik dinamai DC motor.

Motor DC adalah motor listrik yang merupakan perangkat elektromekanis yang menggunakan interaksi medan magnet dan konduktor untuk mengubah energi listrik menjadi energi mekanik putar, dimana motor DC dirancang untuk dijalankan dari sumber daya arus searah (DC). Sudah lebih dari 100 tahun motor DC brush (disikat) digunakan dalam industri serta aplikasi domestik.

Prinsip Kerja Motor DC

Komponen utama dari Motor DC adalah Winding/liltan, Magnet, Rotors, Brushes, Stator dan sumber arus searah (Arus DC). Ketika armature ditempatkan dalam medan magnet yang dihasilkan oleh magnet maka armature diputar dengan menggunakan arus searah, hal ini menghasilkan gaya mekanik. Dengan memanfaatkan putaran motor DC banyak jenis pekerjaan yang dapat dikerjakan.

Gambar-Komponen-Bagian-Motor-DC

Gambar-prinsip-kerja-motor-listrk


f)Dioda(Generic Light Imiting Diode)

Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.

Dalam ilmu fisika dioda digunakan untuk penyeimbang arah rangkaian elektronika. Elektronika memiliki dua terminal yaitu anoda berarti positif dan katoda berarti negatif. Prinsip kerja dari anode berdasarkan teknologi pertemuan positif dan negative semikonduktor. Sehingga anode dapat menghantarkan arus litrik dari anoda menuju katoda, tetapi tika sebaliknya katoda ke anoda.

Dioda digambarkan seperti sebuah switch/saklar dimana saklar tersebut hanya akan bekerja di beri tegangan atau arah arus sesuai dengan polaritas kaki ioda itu sendiri. Pada arah bias maju, bias kaki anoda diberikan tegangan (+) dan tegangan (-) pada katoda maka dioda akan dapat mengalirkan arus pada satu arah. Sedangkan pada arah arus mundur bias dimana kaki anoda diberi tegangan (-) dan tegangan (+) pada katoda maka saklar menjadi terbuka atau saklar OFF.
g)Op-Amp

Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.

 
1. Pin1 & Pin5 (Offset N1 & N2) : Pin untuk mengatur tegangan offset jika perlu

2. Pin2 (IN-) : Pin inverting dari Op Amp

3. Pin3 (IN +) : Pin Non inverting Op Amp

4. Pin4 (Vcc-) : Pin ini terhubung ke ground jika tidak rel negatif

5. Pin6 (Output) : Output daya pin Op-amp

6. Pin7 (Vcc +) : Pin ini terhubung ke + ve rail dari supply tegangan

7. Pin8 (NC) : Tidak ada koneksi

Operational Amplifier (Op-Amp) yang ideal memiliki karakteristik sebagai berikut :
1. Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
2. Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
3. Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
4. Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
5. Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
6. Karakteristik tidak berubah dengan suhu



Rangkaian dasar Op Amp


*From Engineering Circuit Analysis by William H. Hayt

Komparator Op Amp
Komparator digunakan untuk membandingkan dua tegangan (V non-inverting dan V inverting) dan mengubah outputnya berdasarkan tegangan sumber.

*From Engineering Circuit Analysis by William H. Hayt

Hubungan input-output:

*V1 adalah tegangan input non-inverting; V2 adalah tegangan input non-inverting; Vs adalah tegangan sumber (+Vs/-Vs)

Dari gambar dapat dilihat bahwa op amp digunakan untuk membandingkan Vin terhadap tegangan referensi 2.5V, serta pada op amp dihubungkan sumber tegangan +12V dan -12V. Grafik menunjukkan bahwa jika tegangan Vin lebih besar dari 2.5V maka Vout adalah -12V, sebaliknya jika tegangan Vin lebih kecil dari 2.5V maka Vout adalah +12V.
 
Bentuk Gelombang :
 

Rangkaian penguat inverting maupun non-inverting biasanya menggunakan IC Op-Amp 741.

h)NTC


Thermistor adalah salah satu jenis Resistor yang nilai resistansi atau nilai hambatannya dipengaruhi oleh Suhu (Temperature). Thermistor merupakan singkatan dari “Thermal Resistor” yang artinya adalah Tahanan (Resistor) yang berkaitan dengan Panas (Thermal).

3.Dasar Teori[Kembali]

Sensor NTC

Thermistor terdiri dari 2 jenis, yaitu Thermistor NTC (Negative Temperature Coefficient) dan Thermistor PTC (Positive Temperature Coefficient).

Nilai Resistansi Thermistor NTC akan turun jika suhu di sekitar Thermistor NTC tersebut tinggi (berbanding terbalik / Negatif). Sedangkan untuk Thermistor PTC, semakin tinggi suhu disekitarnya, semakin tinggi pula nilai resistansinya (berbanding lurus / Positif).

· Simbol dan Gambar Thermistor NTC

Berikut ini adalah Simbol dan Gambar Komponen Thermistor NTC :


Contoh perubahaan Nilai Resistansi Thermistor NTC saat terjadinya perubahan suhu disekitarnya (dikutip dari Data Sheet salah satu Produsen Thermistor MURATA Part No. NXFT15XH103), Thermistor NTC tersebut bernilai 10kO pada suhu ruangan (25°C), tetapi akan berubah seiring perubahan suhu disekitarnya. Pada -40°C nilai resistansinya akan menjadi 197.388kO, saat kondisi suhu di 0°C nilai resistansi NTC akan menurun menjadi 27.445kO, pada suhu 100°C akan menjadi 0.976kO dan pada suhu 125°C akan menurun menjadi 0.532kO. Jika digambarkan, maka Karakteristik Thermistor NTC tersebut adalah seperti dibawah ini :


Pada umumnya Thermistor NTC adalah Komponen Elektronika yang berfungsi sebagai sensor pada rangkaian Elektronika yang berhubungan dengan Suhu (Temperature). Suhu operasional Thermistor berbeda-beda tergantung pada Produsen Thermistor itu sendiri, tetapi pada umumnya berkisar diantara -90°C sampai 130°C. Beberapa aplikasi Thermistor NTC di kehidupan kita sehari-hari antara lain sebagai pendeteksi Kebakaran, Sensor suhu di Engine (Mesin) mobil, Sensor untuk memonitor suhu Battery Pack (Kamera, Handphone, Laptop) saat Charging, Sensor untuk memantau suhu Inkubator, Sensor suhu untuk Kulkas, sensor suhu pada Komputer dan lain sebagainya. Thermistor NTC atau Thermistor PTC merupakan komponen Elektronika yang digolongkan sebagai Komponen Transduser, yaitu komponen ataupun perangkat yang dapat mengubah suatu energi ke energi lainnya. Dalam hal ini, Thermistor merupakan komponen yang dapat mengubah energi panas (suhu) menjadi hambatan listrik.

1. Resistensi Daya-Nol dari Termistor: (R)

Titik referensi yang nyaman untuk termistor yang disediakan oleh resistansi adalah pada 25 ° C (pada dasarnya pada suhu kamar). Rumus yang digunakan untuk menentukan resistansi termistor:

R = R0 expB (1 / T-1 / T0)

Dimana:
R = Resistensi pada suhu lingkungan T (K)

R0 = Resistensi dalam suhu lingkungan T0 (K)

B = Konstanta material

2. Konstanta Material: (B)

Konstanta material B mengontrol kemiringan karakteristik RT seperti yang ditunjukkan pada gambar. Nilai B bervariasi menurut suhu dan ditentukan antara dua suhu 25 ° C dan 85 ° C dengan rumus:


B25 / 85 = ln (R 85 / R 25 ) / (1 / T - 1 / T 0 )

 

B 25/85 adalah nilai yang digunakan untuk membandingkan dan mengkarakterisasi keramik yang berbeda. Toleransi pada nilai ini disebabkan oleh komposisi material

3. Koefisien suhu Resistensi: ( a )

Nilai ini menunjukkan kepekaan suatu sensor menurut perubahan suhu. Ini didefinisikan sebagai:

a = ? B / T 2

Rumus tersebut menyatakan bahwa toleransi relatif pada a sama dengan toleransi relatif pada nilai B.

4. Konstanta Waktu Termal

Ini adalah periode waktu di mana suhu termistor akan berubah dengan cepat 63,2% perbedaan suhu (T 0 ) dari suhu lingkungan (T 1 ).

5. Konstanta Disipasi Termal

Besarnya daya listrik P (mW) yang dikonsumsi pada T1 (suhu lingkungan) dan T2 (suhu thermistor naik), dengan rumus sebagai berikut:

P = C (T2-T1)

Di mana, C adalah konstanta disipasi termal.

4.Percobaan[Kembali]

Langkah-langkah percobaan:

1.Siapkan semua alat dan bahan yang diperlukan.Untuk alat VCC serta terminal ground bisa ditemukan di sub tab terminal.

2.Kemudian masukkan semua alat dan bahan tersebut kedalam lembar kerja untuk persiapan merangkai.Setelah itu,atur posisi alat atau device yang akan digunakan.


3.Selanjutnya,hubungkan tiap alat atau device yang digunakan sehingga menjadi terhubung satu sama lain.

4.Selanjutnya jalankan simulasi dengan meng-klik logo play di sudut kiri bawah.


Dapat dilihat dari gambar diatas bahwasannya saat simulasi dijalankan lampu LED dan motor DC menyala yang menandakan bahwa rangkaian kita berhasil.

Rangkaian simulasi[Kembali]

1.Saat suhu diatas >14 C


2.Saat suhu <15 C

Prinsip kerja[Kembali]

  • Saat Suhu > 14 C
Saat suhu pada NTC lebih besar dari 14 derajat celcius, maka tegangan output dari NTC akan akan di hambat lagi dengan R21 yang diantara NTC dan R21 ini menghasilkan dropdown tegangan sebesar > 0.15V, lalu tegangan di antara NTC dan R21 diumpankan kekaki input non inverting amplifier U1 yang akan menyebabkan tegangan output U1 5 kali tegangan input U1, selanjutnya tegangan output U1 (> 0.76 V) akan menjadi base transitor Q7, yang mana tegangan base Q7 mengaktifkan VBE transistor Q7 (harus lebih besar / sama dengan 0,76 V) sehingga transistor Q7 hidup, karena transistor Q7 hidup maka arus dari supply ke relay RL10 ke kolektor Q7 ke emitor Q7 lalu ke ground, karena adanya arus yang mengalir di relay maka relay RL21 ON. Akibat relay ON maka switch akan berpindah ke kiri yang akan menghungkan kutup positif baterai ke peltier dan DC fan lalu ke kutup negatif batrai, sehingga peltier dan DC fan hidup.
  • Saat Suhu < 15 C
Saat suhu pada NTC kecil dari 15 derajat celcius, maka tegangan output dari NTC akan di hambat lagi dengan R21 yang diantara NTC dan R21 ini menghasilkan dropdown tegangan sebesar < 0.14V, lalu tegangan di antara NTC dan R21 diumpankan kekaki input non inverting amplifier U1 yang akan menyebabkan tegangan output U1 5 kali tegangan input U1, selanjutnya tegangan output U1 (< 0.72 V) akan menjadi base transitor Q7, yang mana tegangan base Q7 tidak akan cukup untuk mengaktifkan VBE transistor Q7 (harus lebih besar / sama dengan 0,76 V) sehingga transistor Q7 mati, karena transistor Q7 mati maka arus dari supply ke relay RL21 tertahan di kolektor Q3 sehingga relay RL3 off. Akibat relay off maka switch tetap di kanan yang akan menghungkan kutup positif baterai ke resistor ke LED lalu ke kutup negatif batrai, sehingga LED hidup.

Video simulasi[Kembali]

Link download[Kembali]

File Rangkaian KLIK DISINI

File Datasheet NTC KLIK DISINI

File html KLIK DISINI

File Video rangkaian KLIK DISINI

[Menuju Awal]

Tidak ada komentar:

Posting Komentar

  BAHAN PRESENTASI MATAKULIAh Elektronika 2021  OLEH: Muhammad Ilhamdi Akbar 2010953001 Dosen Pengampu: Dr.Darwison,M.T Jurusan Teknik Elek...